Accurate Molecular Geometries in Complex Excited-State Potential Energy Surfaces from Time-Dependent Density Functional Theory.
Bernhard KretzDavid R ReichmanPublished in: Journal of chemical theory and computation (2020)
The interplay of electronic excitations and structural changes in molecules impacts nonradiative decay and charge transfer in the excited state, thus influencing excited-state lifetimes and photocatalytic reaction rates in optoelectronic and energy devices. To capture such effects requires computational methods providing an accurate description of excited-state potential energy surfaces and geometries. We suggest time-dependent density functional theory using optimally tuned range-separated hybrid (OT-RSH) functionals as an accurate approach to obtain excited-state molecular geometries. We show that OT-RSH provides accurate molecular geometries in excited-state potential energy surfaces that are complex and involve an interplay of local and charge-transfer excitations, for which conventional semilocal and hybrid functionals fail. At the same time, the nonempirical OT-RSH approach maintains the high accuracy of parametrized functionals (e.g., B3LYP) for predicting excited-state geometries of small organic molecules showing valence excited states.