Login / Signup

D-T7 Peptide-Modified PEGylated Bilirubin Nanoparticles Loaded with Cediranib and Paclitaxel for Antiangiogenesis and Chemotherapy of Glioma.

Meinan YuDunyan SuYuanyuan YangLin QinChuan HuRui LiuYang ZhouChuanyao YangXiaotong YangGuanlin WangHuile Gao
Published in: ACS applied materials & interfaces (2018)
The blood-brain tumor barrier (BTB) and blood-brain barrier (BBB) have always been the major barriers in glioma therapy. In this report, we proposed D-T7 peptide-modified nanoparticles actively targeted glioma by overcoming the BBB and BTB to improve the antiglioma efficacy. Glioma-targeting experiments showed that the penetration effect of the D-T7 peptide-modified nanoparticles was 7.89-fold higher than that of unmodified nanoparticles. Furthermore, cediranib (CD) and paclitaxel (PTX) were used for the combination of the antiangiogenesis and chemotherapy for glioma. PEGylated bilirubin nanoparticles (BRNPs) were selected as a suitable drug delivery system (CD&PTX@TBRBPs) owing to the antioxidant, anti-inflammatory, and reactive oxygen species-responsive ability. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and apoptosis assays showed that CD&PTX@TBRBPs had the highest cytotoxicity and the median survival time of the CD&PTX@TBRNP group was 3.31-fold and 1.23-fold longer than that of the saline and CD&PTX@BRNP groups, respectively. All the results showed that we constructed a novel and accessible peptide-modified dual drug carrier with an enhanced antiglioma effect.
Keyphrases