A transparent hydrophilic anti-biofouling coating for intraocular lens materials prepared by "bridging" of the intermediate adhesive layer.
Xiaorong LanYang LeiZhoukun HeAnlin YinLinhua LiZhonglan TangMeiling LiYun-Bing WangPublished in: Journal of materials chemistry. B (2021)
The attachment of bio-foulants, including unwanted cells, proteins, and bacteria, to a medical device such as an intraocular lens can lead to implantation failure. Hydrophilic polymers are often used as surface modifiers in the fabrication of anti-biofouling coatings, but a hydrophilic coating can easily become swollen and peel off the substrate. In this study, we chose polymethyl methacrylate (PMMA) as the representative material of intraocular lenses because PMMA has better biocompatibility, a higher refractive index, better optical clarity, lighter weight, more stable performance, and lower cost than other intraocular lens materials. We fabricated polyvinyl alcohol (PVA) coatings with or without a "bridge", that is, an intermediate adhesive layer (AL), to increase the adhesion bonding effect between the anti-biofouling coating and the substrate. The results indicated that the prepared coatings were transparent and noncytotoxic. Moreover, the anti-adhesion properties of the cells and the resistance properties to nonspecific protein adsorption of PMMA modified by both AL and PVA coatings were better and more durable compared with the sample only modified with a physically dipped PVA coating. The coating prepared by AL "bridging" provides a new strategy for the preparation of a transparent hydrophilic anti-biofouling coating suitable for PMMA intraocular lens materials.