Login / Signup

A Novel Sensorised Insole for Sensing Feet Pressure Distributions.

Ines SorrentinoFrancisco Javier Andrade ChavezClaudia LatellaLuca FiorioSilvio TraversaroLorenzo RapettiYeshasvi TirupachuriNuno GuedelhaMarco MaggialiSimeone DussoniGiorgio MettaDaniele Pucci
Published in: Sensors (Basel, Switzerland) (2020)
Wearable sensors are gaining in popularity because they enable outdoor experimental monitoring. This paper presents a cost-effective sensorised insole based on a mesh of tactile capacitive sensors. Each sensor's spatial resolution is about 4 taxels/cm 2 in order to have an accurate reconstruction of the contact pressure distribution. As a consequence, the insole provides information such as contact forces, moments, and centre of pressure. To retrieve this information, a calibration technique that fuses measurements from a vacuum chamber and shoes equipped with force/torque sensors is proposed. The validation analysis shows that the best performance achieved a root mean square error (RMSE) of about 7 N for the contact forces and 2 N m for the contact moments when using the force/torque shoe data as ground truth. Thus, the insole may be an alternative to force/torque sensors for certain applications, with a considerably more cost-effective and less invasive hardware.
Keyphrases
  • low cost
  • single molecule
  • air pollution
  • high resolution
  • healthcare
  • machine learning
  • big data
  • blood pressure
  • particulate matter
  • social media
  • deep learning