Quasiparticle electronic structure of two-dimensional heterotriangulene-based covalent organic frameworks adsorbed on Au(111).
Joseph FrimpongZhen-Fei LiuPublished in: Journal of physics. Condensed matter : an Institute of Physics journal (2021)
The modular nature and unique electronic properties of two-dimensional (2D) covalent organic frameworks (COFs) make them an attractive option for applications in catalysis, optoelectronics, and spintronics. The fabrications of such devices often involve interfaces formed between COFs and substrates. In this work, we employ the first-principlesGWapproach to accurately determine the quasiparticle electronic structure of three 2D carbonyl bridged heterotriangulene-based COFs featuring honeycomb-kagome lattice, with their properties ranging from a semi-metal to a wide-gap semiconductor. Moreover, we study the adsorption of these COFs on Au(111) surface and characterize the quasiparticle electronic structure at the heterogeneous COF/Au(111) interfaces. To reduce the computational cost, we apply the recently developed dielectric embeddingGWapproach and show that our results agree with existing experimental measurement on the interfacial energy level alignment. Our calculations illustrate how the many-body dielectric screening at the interface modulates the energies and shapes of the Dirac bands, the effective masses of semiconducting COFs, as well as the Fermi velocity of the semi-metallic COF.