Login / Signup

STN7 Kinase Is Essential for Arabidopsis thaliana Fitness under Prolonged Darkness but Not under Dark-Chilling Conditions.

Anna WęgrzynMałgorzata KrysiakAnna KulikKatarzyna B GieczewskaRadosław Mazur
Published in: International journal of molecular sciences (2022)
Reversible phosphorylation of photosystem II light harvesting complexes (LHCII) is a well-established protective mechanism enabling efficient response to changing light conditions. However, changes in LHCII phosphorylation were also observed in response to abiotic stress regardless of photoperiod. This study aimed to investigate the impact of dark-chilling on LHCII phosphorylation pattern in chilling-tolerant Arabidopsis thaliana and to check whether the disturbed LHCII phosphorylation process will impact the response of Arabidopsis to the dark-chilling conditions. We analyzed the pattern of LHCII phosphorylation, the organization of chlorophyll-protein complexes, and the level of chilling tolerance by combining biochemical and spectroscopy techniques under dark-chilling and dark conditions in Arabidopsis mutants with disrupted LHCII phosphorylation. Our results show that during dark-chilling, LHCII phosphorylation decreased in all examined plant lines and that no significant differences in dark-chilling response were registered in tested lines. Interestingly, after 24 h of darkness, a high increase in LHCII phosphorylation was observed, co-occurring with a significant F V /F M parameter decrease. The highest drop of F V /F M was detected in the stn7-1 line-mutant, where the LHCII is not phosphorylated, due to the lack of STN7 kinase. Our results imply that STN7 kinase activity is important for mitigating the adverse effects of prolonged darkness.
Keyphrases
  • protein kinase
  • arabidopsis thaliana
  • high resolution
  • stress induced
  • electronic health record
  • heat stress