Supercritical Fluid Nanospray Mass Spectrometry: II. Effects on Ionization.
Mahmoud Elhusseiny MostafaMadisyn M HayesJames P GriniasBenjamin J BythellJames L EdwardsPublished in: Journal of the American Society for Mass Spectrometry (2023)
Nanospraying supercritical fluids coupled to a mass spectrometer (nSF-MS) using a 90% supercritical fluid CO 2 carrier (sCO 2 ) has shown an enhanced desolvation compared to traditional liquid eluents. Capillaries of 25, 50, and 75 μm internal diameter (i.d.) with pulled emitter tips provided high MS detection sensitivity. Presented here is an evaluation of the effect of proton affinity, hydrophobicity, and nanoemitter tip size on the nSF-MS signal. This was done using a set of primary, secondary, tertiary, and quaternary amines with butyl, hexyl, octyl, and decyl chains as analytes. Each amine class was analyzed individually to evaluate hydrophobicity and proton affinity effects on signal intensity. The system has shown a mass sensitive detection on a linear dynamic range of 0.1-100 μM. Results indicate that hydrophobicity has a larger effect on the signal response than proton affinity. Nanospraying a mixture of all amine classes using the 75 μm emitter has shown a quaternary amine signal not suppressed by competing analytes. Competing ionization was observed for primary, secondary, and tertiary amines. The 75 and 50 μm emitters demonstrated increased signal with increasing hydrophobicity. Surprisingly, the 25 μm i.d. emitter yielded a signal decrease as the alkyl chain length increased, contrary to conventional understanding. Nanospraying the evaporative fluid in a sub-500 nm emitter likely resulted in differences in the ionization mechanism. Results suggest that 90% sCO 2 with 9.99% methanol and 0.01% formic acid yielded fast desolvation, high ionization efficiency, and low matrix effect, which could benefit complex biological matrix analysis.