Five- and Six-Coordinated Silver(I) Complexes Derived from 2,6-(Pyridyl)iminodiadamantanes: Sustained Release of Bioactive Silver toward Bacterial Eradication.
Jorge JimenezIndranil ChakrabortyAnthony M Del CidPradip K MascharakPublished in: Inorganic chemistry (2017)
Silver(I) complexes of two designed tridentate ligands, namely, 2,6-(pyridyl)iminoditriazaadamantane (pydTAm) and 2,6-(pyridyl)iminodiadamantane (pydAm), have been synthesized and structurally characterized. [Ag(pydTAm)2](CF3SO3) (1), the hitherto unknown mer isomer of a silver(I) octahedral complex, crystallizes in a highly symmetric body-centered cubic I4̅3m space group. Quite in contrast, the AgI center in the analogous [Ag(pydAm)2](CF3SO3) (2) complex resides in a trigonal-bipyramidal geometry and crystallizes in a triclinic P1̅ space group with two crystallographically independent molecules in the asymmetric unit. Complex 1 exhibits exceptional solubility in aqueous media and leads to the efficient eradication of several bacterial strains upon sustained release of bioactive silver.