Login / Signup

Effects of HCO3- on Degradation of Toxic Contaminants of Emerging Concern by UV/NO3.

Ying HuangMinghao KongDanielle WestermanElvis Genbo XuScott CoffinKristin H CochranYiqing LiuSusan D RichardsonDaniel SchlenkDionysios D Dionysiou
Published in: Environmental science & technology (2018)
This study investigated the significant influence of HCO3- on the degradation of contaminants of emerging concern (CECs) during nitrate photolysis at 254 nm for water reuse applications. The second-order rate constants for the reactions between selected contaminants with carbonate radical (CO3•-) were determined at pH 8.8 and T = 20 °C: estrone ((5.3 ± 1.1) × 108 M-1 s-1), bisphenol A ((2.8 ± 0.2) × 108 M-1 s-1), 17α-ethynylestradiol ((1.6 ± 0.3) × 108 M-1 s-1), triclosan ((4.2 ± 1.4) × 107 M-1 s-1), diclofenac ((2.7 ± 0.7) × 107 M-1 s-1), atrazine ((5.7 ± 0.1) × 106 M-1 s-1), carbamazepine ((4.2 ± 0.01) × 106 M-1 s-1), and ibuprofen ((1.2 ± 1.1) × 106 M-1 s-1). Contributions from UV, reactive nitrogen species (RNS), hydroxyl radical (•OH), and CO3•- to the CEC decomposition in UV/NO3- in the presence and absence of HCO3- were investigated. In addition, possible transformation products and degradation pathways of triclosan, diclofenac, bisphenol A, and estrone in UV/NO3-/HCO3- were proposed based on the mass (MS) and MS2 spectra. Significant reduction in the cytotoxicity of bisphenol A was observed after the treatment with UV/NO3-/HCO3-.
Keyphrases
  • drinking water
  • mass spectrometry
  • multiple sclerosis
  • aqueous solution
  • nitric oxide
  • density functional theory