Login / Signup

Complete genome sequence of a lettuce chlorosis virus isolate from China and genome recombination/rearrangement analysis.

Xiaohui ZhaoMin ZhuQian WuJing ZhangYi XuXiaorong Tao
Published in: Archives of virology (2017)
We determined the complete genome sequence of a lettuce chlorosis crinivirus (LCV) from China (LCV-NJ). The bipartite genome of LCV-NJ consists of RNA1 and RNA2 which are 8165 and 8454 nucleotides (nt) in length, respectively. The genomic structure of LCV-NJ RNA1 resembles that of LCV-California, an isolate with four open reading frames (ORFs) in RNA1. Although the amino acid sequences of ORF 1a and 1b have 92 and 99% identity between LCV-NJ and LCV-California, ORF 2 and ORF3 of LCV-NJ share only 63 and 71% identity with those of LCV-California, respectively. In addition LCV-NJ RNA2 contains 9 ORFs, compared to 10 ORFs in LCV-California. ORF10 was missing due to the deletion of a 173-nt sequence within the 3'-terminal region of LCV-NJ RNA2. Insertion or deletion of sequences of varying lengths was also observed in RNA1 and other regions of RNA2. Based on these findings, we propose that LCV-NJ/LCV-California may have undergone genome recombination and/or rearrangement in RNA1 and RNA2.
Keyphrases
  • nucleic acid
  • amino acid
  • dna damage
  • gene expression
  • oxidative stress
  • dna methylation
  • dna repair
  • minimally invasive
  • copy number
  • data analysis