Electron-Rich Phenoxyl Mediators Improve Thermodynamic Performance of Electrocatalytic Alcohol Oxidation with an Iridium Pincer Complex.
Conor M GalvinRobert M WaymouthPublished in: Journal of the American Chemical Society (2020)
Electron-rich phenols, including α-rac-tocopherol Ar1OH, 2,4,6,-tri-tert-butylphenol Ar3OH, and butylated hydroxy-toluene Ar4OH, are effective electrochemical mediators for the electrocatalytic oxidation of alcohols by an iridium amido dihyride complex (PNP)Ir(H)2 (IrN 1, PNP = bis[2-diisopropylphosphino)ethyl]amide). Addition of phenol mediators leads to a decrease in the onset potential of catalysis from -0.65 V vs Fc+/0 under unmediated conditions to -1.07 V vs Fc+/0 in the presence of phenols. Mechanistic analysis suggests that oxidative turnover of the iridium amino trihydride (PNHP)Ir(H)3 (IrH 2, PNHP = bis[2-diisopropylphosphino)ethyl]amine) to IrN 1 proceeds through two successive hydrogen atom transfers (HAT) to 2 equiv of phenoxyl that are generated transiently at the anode. Isotope studies and comparison to known systems are consistent with initial homolysis of an Ir-H bond being rate-determining. Turnover frequencies up to 14.6 s-1 and an average Faradaic efficiency of 93% are observed. The mediated system shows excellent chemoselectivity in bulk oxidations of 2-propanol and 1,2-benzenedimethanol in THF and is also viable in neat 2-propanol.