Login / Signup

Timing Matters: Time of Day Impacts the Ergogenic Effects of Caffeine-A Narrative Review.

Ye ZhangWeijun YangYizhang XueDingchun HouSongyue ChenZhiqin XuSijia PengHaotian ZhaoCan WangChang Liu
Published in: Nutrients (2024)
Caffeine has attracted significant attention from researchers in the sports field due to its well-documented ergogenic effects across various athletic disciplines. As research on caffeine continues to progress, there has been a growing emphasis on evaluating caffeine dosage and administration methods. However, investigations into the optimal timing of caffeine intake remain limited. Therefore, this narrative review aimed to assess the ergogenic effects of caffeine administration at different times during the morning (06:00 to 10:00) and evening (16:00 to 21:00). The review findings suggest that circadian rhythms play a substantial role in influencing sports performance, potentially contributing to a decline in morning performance. Caffeine administration has demonstrated effectiveness in mitigating this phenomenon, resulting in ergogenic effects and performance enhancement, even comparable to nighttime levels. While the specific mechanisms by which caffeine regulates circadian rhythms and influences sports performance remain unclear, this review also explores the mechanisms underlying caffeine's ergogenic effects, including the adenosine receptor blockade, increased muscle calcium release, and modulation of catecholamines. Additionally, the narrative review underscores caffeine's indirect impact on circadian rhythms by enhancing responsiveness to light-induced phase shifts. Although the precise mechanisms through which caffeine improves morning performance declines via circadian rhythm regulation necessitate further investigations, it is noteworthy that the timing of caffeine administration significantly affects its ergogenic effects during exercise. This emphasizes the importance of considering caffeine intake timing in future research endeavors to optimize its ergogenic potential and elucidate its mechanisms.
Keyphrases
  • skeletal muscle
  • body composition
  • weight loss
  • climate change
  • current status