Renal ischemia/reperfusion injury (RIRI) is an inevitable complication following kidney transplantation surgery, accompanied by the generation of a large amount of free radicals. A cascade of events including oxidative stress, extreme inflammation, cellular apoptosis, and thrombosis disrupts the microenvironment of renal cells and the hematological system, ultimately leading to the development of acute kidney injury (AKI). The current research primarily focuses on reducing inflammation and mitigating damage to renal cells through antioxidative approaches. However, studies on simultaneously modulating the renal hematologic system remain unreported. Herein, potent and novel drug-loaded nanomicelles can be efficiently self-assembled with magnolol (MG) and ebselen (EBS) by π-π conjugation, hydrophobic action and the surfactant properties of Tween-80. The ultrasmall MG/EBS nanomicelles (average particle size: 10-25 nm) not only fully preserve the activity of both drugs, but also greatly enhance drug utilization (encapsulation rates: MG: 90.1%; EBS: 49.3%) and reduce drug toxicity. Furthermore, EBS, as a glutathione peroxidase mimic and NO catalyst, combines with the multifunctional MG to scavenge free radicals and hydroperoxides, significantly inhibiting inflammation and thrombosis while effectively preventing apoptosis of vascular endothelial cells and renal tubular epithelial cells. This study provides a new strategy and theoretical foundation for the simultaneous regulation of kidney cells and blood microenvironment stability.
Keyphrases
- oxidative stress
- induced apoptosis
- ischemia reperfusion injury
- cell cycle arrest
- acute kidney injury
- diabetic rats
- dna damage
- endoplasmic reticulum stress
- cell death
- endothelial cells
- kidney transplantation
- drug delivery
- cardiac surgery
- minimally invasive
- emergency department
- pi k akt
- gold nanoparticles
- cancer therapy
- cell proliferation
- coronary artery disease
- photodynamic therapy
- coronary artery bypass
- adverse drug
- atrial fibrillation