Login / Signup

High-Nuclearity Ln 210 Al 140 Clusters: Neonates of Open Hollow Dodecahedral Cage Families.

Man-Ting ChenQiao-Fei XuMukeremu AibibulaXiang-Jian KongLa-Sheng LongLan-Sun Zheng
Published in: Journal of the American Chemical Society (2024)
Open hollow dodecahedral cage clusters have long been a coveted target in synthetic chemistry, yet their creation poses immense challenges. Here we report two open hollow dodecahedral lanthanide-aluminum (Ln-Al) heterometallic cage clusters, namely, [Ln 210 Al 140 (μ 2 -OH) 210 (μ 3 -OH) 540 (OAc) 180 (H 2 O) 156 ](ClO 4 ) 120 ·(MeCN) x ·(H 2 O) y , (Ln = Dy and x = 27, y = 300 for 1 ; Ln = Y and x = 28, y = 420 for 2 ). Remarkably, the 350 metal atoms in 1 and 2 display a Keplerate-type four-shell structure of truncated icosidodecahedron@dodecahedron@dodecahedron@icosidodecahedron. The diameter of the cationic cluster in 1 is approximately 5.0 nm, with an inner cavity diameter of about 2.8 nm and a window diameter of roughly 0.66 nm. The cluster in 1 boasts an accessible inner void volume of up to 15,000 Å 3 . Notably, these cage clusters maintain stability in water, and the truncated icosidodecahedrons in 1 and 2 are the first of their kind synthesized to date. Given that the open hollow dodecahedral Ln-Al cage cluster has never been reported before, this work represents a member in the family of hollow open dodecahedral cages.
Keyphrases