Activation of p53 in anoxic freshwater crayfish, Faxonius virilis.
Aakriti GuptaSarah A BreedonKenneth B StoreyPublished in: The Journal of experimental biology (2022)
Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis and autophagy. Here, we studied the stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response were measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 were assessed using immunoblotting at sites known to be phosphorylated (serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phosphorylated p53 (p-p53) was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low-oxygen stress were studied. The results showed an increase in p-p53 levels during anoxia in both hepatopancreas and tail muscle. Increased transcript levels of ei24 support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser15 phosphorylated p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low-oxygen stress. Understanding how anoxia-tolerant organisms are able to protect themselves against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.
Keyphrases
- dna damage
- dna repair
- stress induced
- oxidative stress
- cell death
- dna damage response
- dna binding
- transcription factor
- endoplasmic reticulum stress
- signaling pathway
- rna seq
- cell cycle arrest
- small molecule
- physical activity
- nuclear factor
- gene expression
- copy number
- gram negative
- liquid chromatography
- cell proliferation
- single cell
- high resolution