Login / Signup

Fast Peroxy Radical Isomerization and OH Recycling in the Reaction of OH Radicals with Dimethyl Sulfide.

Torsten BerndtW ScholzB MentlerLukas FischerE H HoffmannA TilgnerNoora HyttinenN L PrisleArmin HanselHartmut Herrmann
Published in: The journal of physical chemistry letters (2019)
Dimethyl sulfide (DMS), produced by marine organisms, represents the most abundant, biogenic sulfur emission into the Earth's atmosphere. The gas-phase degradation of DMS is mainly initiated by the reaction with the OH radical forming first CH3SCH2O2 radicals from the dominant H-abstraction channel. It is experimentally shown that these peroxy radicals undergo a two-step isomerization process finally forming a product consistent with the formula HOOCH2SCHO. The isomerization process is accompanied by OH recycling. The rate-limiting first isomerization step, CH3SCH2O2 → CH2SCH2OOH, followed by O2 addition, proceeds with k = (0.23 ± 0.12) s-1 at 295 ± 2 K. Competing bimolecular CH3SCH2O2 reactions with NO, HO2, or RO2 radicals are less important for trace-gas conditions over the oceans. Results of atmospheric chemistry simulations demonstrate the predominance (≥95%) of CH3SCH2O2 isomerization. The rapid peroxy radical isomerization, not yet considered in models, substantially changes the understanding of DMS's degradation processes in the atmosphere.
Keyphrases
  • room temperature
  • molecular dynamics
  • human milk
  • risk assessment
  • preterm infants
  • preterm birth