Size-Dependent Electronic Properties of Uniform Ensembles of Strongly Confined Graphene Quantum Dots.
Zhiqiang JiEnkeleda DervishiStephen K DoornMilan SykoraPublished in: The journal of physical chemistry letters (2019)
The electronic structure of a series of bottom-up synthesized graphene quantum dots (GQDs) smaller than 2 nm was investigated by spectroelectrochemistry, yielding insights not previously available from ensemble-level studies. The results show that for the strongly confined GQDs the dependence of the band gap on the GQD size deviates from the prediction of the standard Dirac Fermion model but agrees well with the models explicitly accounting for the electron-electron and electron-hole interactions. The HOMO/LUMO energy levels are found to be distributed nearly symmetrically around the 0 V value versus normal hydrogen electrode (NHE), becoming more positive/negative, respectively, with increasing GQD size. The exciton binding energies are found to follow power dependence on the number of carbon atoms per GQD, with the experimental values falling within the range of ∼0.1 to ∼0.6 eV. Given the broad accessibility of the described experimental tools and methods, our work opens a path to a more systematic examination of quantum confinement effects in GQDs.