Highly Enantioselective Binaphthyl-Based Chiral Phosphoramidite Stabilized-Palladium Nanoparticles for Asymmetric Suzuki C-C Coupling Reactions.
Simay İnceÖzlem ÖnerMustafa Kemal YılmazMustafa KeleŞBilgehan GüzelPublished in: Inorganic chemistry (2023)
The optically pure binaphthyl-based phosphoramidite ligands and their perfluorinated analogs have been first used for the preparation of chiral palladium nanoparticles (PdNPs). These PdNPs have been extensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, 31 P NMR, and thermogravimetric analysis techniques. The circular dichroism(CD) analysis of chiral PdNPs exhibited negative cotton effects. Perfluorinated phosphoramidite ligands provided smaller (2.32-3.45 nm) and well-defined nanoparticles, in comparison with the nonfluorinated analog (4.12 nm). The catalytic behavior of binaphthyl-based phosphoramidite stabilized chiral PdNPs has been investigated in the asymmetric Suzuki C-C coupling reactions for the formation of sterically hindered binaphthalene units, and high isolated yields (up to 85%) were achieved with excellent enantiomeric excesses (>99% ee). Recycling studies revealed that chiral PdNPs could be reused over 12 times without significant loss in activity and enantioselectivity (>99% ee). The nature of the active species was also investigated with a combination of poisoning and hot filtration tests and found that catalytically active species is the heterogeneous nanoparticles. These results indicate that the use of phosphoramidite ligands as a stabilizer for developing efficient and unique chiral nanoparticles could open up a field for many other asymmetric organic transformations promoted by chiral catalysts.
Keyphrases
- capillary electrophoresis
- electron microscopy
- ionic liquid
- high resolution
- mass spectrometry
- solid state
- photodynamic therapy
- multidrug resistant
- magnetic resonance
- magnetic resonance imaging
- room temperature
- computed tomography
- gold nanoparticles
- reduced graphene oxide
- molecular dynamics simulations
- highly efficient
- data analysis