Presynaptic Precursor Vesicles-Cargo, Biogenesis, and Kinesin-Based Transport across Species.
Astrid G PetzoldtPublished in: Cells (2023)
The faithful formation and, consequently, function of a synapse requires continuous and tightly controlled delivery of synaptic material. At the presynapse, a variety of proteins with unequal molecular properties are indispensable to compose and control the molecular machinery concerting neurotransmitter release through synaptic vesicle fusion with the presynaptic membrane. As presynaptic proteins are produced mainly in the neuronal soma, they are obliged to traffic along microtubules through the axon to reach the consuming presynapse. This anterograde transport is performed by highly specialised and diverse presynaptic precursor vesicles, membranous organelles able to transport as different proteins such as synaptic vesicle membrane and membrane-associated proteins, cytosolic active zone proteins, ion-channels, and presynaptic membrane proteins, coordinating synaptic vesicle exo- and endocytosis. This review aims to summarise and categorise the diverse and numerous findings describing presynaptic precursor cargo, mode of trafficking, kinesin-based axonal transport and the molecular mechanisms of presynaptic precursor vesicles biogenesis in both vertebrate and invertebrate model systems.