Login / Signup

Design of High-Symmetrical Magnesium-Organic Frameworks with Acetate as Modulator and Their Fluorescence Sensing Performance.

Xiao-Juan LeiXiang-Yang HouMan-Cheng HuYu-Cheng JiangGuo-Xin SunMan-Cheng HuQuan-Guo Zhai
Published in: Inorganic chemistry (2018)
During the formation of magnesium-organic frameworks, the coordination sphere of magnesium tends to be partially occupied by O-containing solvent molecules such as amides, which will dramatically decrease the symmetry of Mg-organic frameworks and thus lead to low stability. It is noted that up to now, most reported Mg-metal-organic frameworks (MOFs) (>80%) crystallize in the space groups whose symmetry is lower than that of a tetragonal system. In this work, we demonstrate that acetate (Ac) may act as modulator to eliminate the influence of amide solvent and improve the symmetry of Mg-organic frameworks. Two novel Mg-MOFs, namely, {[(CH3)NH3]4[Mg3(BTB)8/3(Ac)2(H2O)]} n (SNNU-35, H3BTB = 4',4'',4'''-benzene-1,3,5-tribenzoic acid) and {[(CH3)2NH2][Mg2(FDA)2(Ac)]} n (SNNU-36, H2FDA = 2,5-furandicarboxylic acid) were successfully designed, which crystallize in rhombohedral R-3 and tetragonal I4 /mmm space groups, respectively. Four independent BTB ligands link three unique Mg cations and generate superlarge [Mg21BTB17] nanocages, which interlock each other by strong π···π stacking to give a two-fold interpenetrating architecture of SNNU-35. On the other hand, carboxylate and acetate groups chelate Mg atoms to form one-dimensional chains, which are extended by FDA to produce the rod-packing framework of SNNU-36. Two microporous Mg-MOFs both exhibit notable CO2 and H2 uptakes. H3BTB and H2FDA ligands both have emission features, and Mg ions usually can enhance the fluorescent intensity, which lead to a strong solid-state luminescence emission property of SNNU-35 and -36. Importantly, two Mg-MOFs both show fast and quantative sensing performance for nitrocompounds. Among three selected models of substrate, SNNU-35 and -36 can eliminate the interference of nitromethane (NM) and exhibit high sensitivity to nitrobenzene (NB) and o-nitrotoluene (2-NT) with large k sv values (>105 M-1). Especially, the fluorescence quenching efficiency of NB (5000 ppm) and 2-NT (8000 ppm) can reach 96.3% and 89.5% and 85.0% and 83.7% for SNNU-35 and -36, respectively. This work offers not only an effective route to improve the symmetry of magnesium-organic frameworks but also two potential fluorescence sensors for nitroaromatic compounds.
Keyphrases
  • metal organic framework
  • solid state
  • quantum dots
  • single molecule
  • room temperature
  • ionic liquid
  • water soluble
  • climate change
  • photodynamic therapy
  • amino acid
  • solar cells