Login / Signup

Linear, Planar, Orbicular, and Macrocyclic Multinuclear Zinc (Meth)acrylate Complexes.

Takanori IwasakiGaito SuehisaHiroshi TadaokaKazuyoshi ShigaKyoko Nozaki
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2024)
Zinc carboxylate complexes are widely utilized as artificial models of metalloenzymes and as secondary building units of PCPs/MOFs. However, the relationship between the structure of the monodentate carboxylato ligand and the molecular arrangement of multinuclear zinc carboxylate complexes is not fully understood because of the coordination flexibility of the Zn ion and carboxylato ligands. Herein, we report the structural analysis of a series of complexes derived from zinc (meth)acrylate which has a linear infinite chain structure. The molecular structure of μ 4 -oxido-bridged tetranuclear complexes [Zn 4 (μ 4 -O)(OCOR) 6 ] revealed a distorted Zn 4 O core. Crystallization of zinc acrylate under aqueous conditions afforded a μ 3 -hydroxido-containing pentanuclear complex [Zn 5 (μ 3 -OH) 2 (OCOR) 8 ] as the repeating unit of an infinite sheet-like structure in the solid state. It was also obtained by the hydrolysis of the μ 4 -oxido-bridged tetranuclear complex. In sharp contrast, the methacrylate analog retained the methacrylato ligands under aqueous crystallization conditions to form a macrocyclic dodecanuclear complex with methacrylato as the sole ligand.
Keyphrases
  • oxide nanoparticles
  • heavy metals
  • solid state
  • magnetic resonance
  • ionic liquid
  • single molecule
  • risk assessment
  • single cell
  • neural network
  • metal organic framework