Login / Signup

Has the concept of polyspermy prevention been invented in the laboratory?

Brian Dale
Published in: Zygote (Cambridge, England) (2024)
There is no evidence, nor need, for a fast block to polyspermy in animal oocytes. The idea that oocytes have evolved a mechanism to allow the entry of one spermatozoon and repel all others has, however, gained consensus over the last century. The main culprit is the sea urchin, which has been used for over a century in in vitro studies of the fertilization process. Images of sea urchin oocytes with thousands of sperm attached to the surface are commonplace in textbooks and appeal to the nature of the reader implying an intriguing surface mechanism of sperm selection despite these oocytes being fixed for photography (Figure ). The abundance of gametes in this marine invertebrate and the ease of experimentation have given us the possibility to elucidate many aspects of the mechanism of fertilization, but has also led to ongoing controversies in reproductive biology, one being polyspermy prevention. Kinetic experiments by Rothschild and colleagues in the 1950s led to the hypothesis of a fast partial block to polyspermy in sea urchin oocytes that reduced the probability of a second spermatozoon from entering the oocyte by 1/20th. In the 1970s, Jaffe and colleagues suggested, with circumstantial evidence, that this partial block was due to the sperm-induced depolarization of the oocyte plasma membrane. However, the fate of supernumerary spermatozoa is determined well before the plasma membrane of the oocyte depolarizes. Transmembrane voltage does not serve to regulate sperm entry. Scholastic texts have inadvertently promulgated this concept across the animal kingdom with no logical correlation or experimentation and, as of today, a molecular mechanism to regulate sperm entry in oocytes has not been identified.
Keyphrases
  • deep learning
  • high glucose
  • machine learning
  • convolutional neural network
  • endothelial cells
  • drug induced
  • microbial community
  • antibiotic resistance genes