Login / Signup

A nature-inspired hydrogen-bonded supramolecular complex for selective copper ion removal from water.

Ngoc T BuiHyungmook KangSimon J TeatGregory M SuChih-Wen PaoYi-Sheng LiuEdmond W ZaiaJinghua GuoJeng-Lung ChenKatie R MeihausChaochao DunTracy M MattoxJeffrey R LongPeter FiskeRobert KosteckiJeffrey J Urban
Published in: Nature communications (2020)
Herein, we present a scalable approach for the synthesis of a hydrogen-bonded organic-inorganic framework via coordination-driven supramolecular chemistry, for efficient remediation of trace heavy metal ions from water. In particular, using copper as our model ion of interest and inspired by nature's use of histidine residues within the active sites of various copper binding proteins, we design a framework featuring pendant imidazole rings and copper-chelating salicylaldoxime, known as zinc imidazole salicylaldoxime supramolecule. This material is water-stable and exhibits unprecedented adsorption kinetics, up to 50 times faster than state-of-the-art materials for selective copper ion capture from water. Furthermore, selective copper removal is achieved using this material in a pH range that was proven ineffective with previously reported metal-organic frameworks. Molecular dynamics simulations show that this supramolecule can reversibly breathe water through lattice expansion and contraction, and that water is initially transported into the lattice through hopping between hydrogen-bond sites.
Keyphrases
  • oxide nanoparticles
  • molecular dynamics simulations
  • heavy metals
  • water soluble
  • metal organic framework
  • risk assessment
  • molecular docking
  • aqueous solution
  • drinking water
  • anaerobic digestion