Time series cross-correlation between home range and number of infected people during the COVID-19 pandemic in a suburban city.
Haruka KatoAtsushi TakizawaPublished in: PloS one (2022)
Control of human mobility is one of the most effective measures to prevent the spread of coronavirus disease 2019 (COVID-19). However, the imposition of emergency restrictions had significant negative impacts on citizens' daily lives. As vaccination progresses, we need to consider more effective measures to control the spread of the infection. The research question of this study is as follows: Does the control of home range correlate with a reduction in the number of infected people during the COVID-19 pandemic? This study aims to clarify the correlation between home range and the number of people infected with SARS-CoV-2 during the COVID-19 pandemic in Ibaraki City. Home ranges are analyzed by the Minimum Convex Polygon method using mobile phone GPS location history data. We analyzed the time series cross-correlation between home range lengths and the number of infected people. Results reveal a slight positive correlation between home range and the number of infected people after one week during the COVID-19 pandemic. Regarding home range length, the cross-correlation coefficient is 0.4030 even at a lag level of six weeks, which has the most significant coefficient. Thus, a decrease in the home range is a weak factor correlated with a reduction in the number of infected people. This study makes a significant contribution to the literature by evaluating key public health challenges from the perspective of controliing the spread of the COVID-19 infectuion. Its findings has implications for policy makers, practitioners, and urban scientists seeking to promote urban sustainability.