Radiative emission of polaritons controlled by light-induced geometric phase.
Csaba FábriGábor J HalászLorenz S CederbaumÁgnes VibókPublished in: Chemical communications (Cambridge, England) (2022)
Polaritons - hybrid light-matter states formed in cavity - strongly change the properties of the underlying matter. In optical or plasmonic nanocavities, polaritons decay by radiative emission of the cavity, which is accessible experimentally. Due to the interaction of a molecule with the quantized radiation field, polaritons exhibit light-induced conical intersections (LICIs) which dramatically influence the nuclear dynamics of molecular polaritons. We show that ultrafast radiative emission from the lower polariton is controlled by the geometric phase imposed by the LICI. This finding provides insight into the process of emission and, furthermore, allows one to compute these signals by augmenting the Born-Oppenheimer approximation for polaritons with a geometric phase term.