Structure and Performance Attributes Optimization and Ranking of Gamma Irradiated Polymer Hybrids for Industrial Application.
Suhail H SerbayaEmad Hashim AbualsauodMohammed Salem BasingabHatim BukhariAli RizwanMalik Sajjad MehmoodPublished in: Polymers (2021)
The selection of suitable composite material for high-strength industrial applications, from the list of available alternatives, is a tedious task as it requires an optimized structural performance-based solution. This study aimed to optimize the concentration of fillers, i.e., vinyl tri-ethoxy silane and absorbed gamma-dose, to enhance the properties of an industrial scale polymer, i.e., ultra-high molecular weight polyethylene (UHMWPE). The UHMWPE hybrids, in addition to silane, were treated with (30, 65, and 100 kGy) gamma dose and then tested for ten application-specific structural and performance attributes. The relative importance of attributes based on an 11-point fuzzy conversation was used for establishing the material assessment graph and corresponding adjacency matrix. Afterwards, the normalized values of attributes were used to establish the decision matrix for each alternative. The normalization was performed after the identification of high obligatory valued (HOV) and low obligatory valued (LOV) attributes. After this, suitability index values (SIVs) were calculated for ranking the hybrids that revealed hybrids 65 kGy irradiated the hybrid as the best choice and ranked as first among the existing alternatives. The major responsible factors were higher oxidation strength, a dense cross-linking network, and elongation at break. The values of the aforementioned factors for 65 kGy irradiated hybrids were 0.24, 91, and 360 MPa, respectively, as opposed to 0.54, 75, and 324 MPa for 100 kGy irradiated hybrids, thus placing the latter in second place regarding higher values of Yield Strength and Young Modulus. Finally, it is believed that the reported results and proposed model in this study will improve preoperative planning as far as considering these hybrids for high-strength industrial applications including total joint arthroplasty, textile-machinery pickers, dump trucks lining ships, and harbors bumpers and sliding, etc.