Login / Signup

Room-Temperature Formation of CdTeSe Magic-Size Clusters from Oleate-Capped CdTe Precursor Compounds via CdSe Monomer Substitution.

Jie HuYusha YangQiu ShenShasha WangXiaoqin ChenChaoran LuanKui Yu
Published in: Inorganic chemistry (2024)
We report the first room-temperature synthesis of ternary CdTeSe magic-size clusters (MSCs) that have mainly the surface ligand oleate (OA). The MSCs display sharp optical absorption peaking at ∼399 nm and are thus referred to as MSC-399. They are made from prenucleation-stage samples of binary CdTe and CdSe, which are prepared by two reactions in 1-octadecene (ODE) of cadmium oleate (Cd(OA) 2 ) and tri- n -octylphosphine chalcogenide (ETOP, E = Te and Se) at 25 °C for 120 min and 80 °C for 15 min, respectively. When the two binary samples are mixed at room temperature and dispersed in a mixture of toluene (Tol) and octylamine (OTA), the CdTeSe MSC-399 develops. Also, when the CdSe sample is added to CdTe MSC-371 in a dispersion, the transformation from CdTe MSC-371 to CdTeSe MSC-399 is seen. We propose that the MSCs develop from their precursor compounds (PCs) that are relatively transparent in optical absorption, such as CdTeSe MSC-399 from CdTeSe PC-399 and CdTe MSC-371 from CdTe PC-371. The formation of CdTeSe PC-399 undergoes monomer substitution and not anion exchange, which is the reaction of CdTe PC-371 and the CdSe monomer to produce CdTeSe PC-399 and the CdTe monomer. Our study provides evidence of monomer substitution for the transformation from binary CdTe to ternary CdTeSe PCs.
Keyphrases