Consolidated Melting Gel Coatings on AZ31 Magnesium Alloy with Excellent Corrosion Resistance in NaCl Solutions: An Interface Study.
Mario AparicioJadra MosaGabriela RodriguezJennifer GuzmanQuentin PicardLisa C KleinAndrei JitianuPublished in: ACS applied materials & interfaces (2019)
Magnesium alloys, with a density two-thirds that of aluminum, are very attractive for the industry. However, these alloys are extremely susceptible to corrosion in the presence of aggressive electrolytes such as NaCl solutions. Here, we designed hybrid coatings obtained by the consolidation of organically modified polysilsesquioxanes called "melting gels" for the corrosion protection of AZ31 magnesium alloy in NaCl solutions. The main focus was to study the interaction between coatings and substrate and the influence of the coating thickness on the final properties. Micro-scratch tests, adhesion by tape tests, confocal Raman microscopy, SEM-EDS, and ToF-SIMS indicate good adhesion of coatings based on the interaction of melting gels and substrate. These measurements indicate the presence of the Si-O-Mg bonds between the substrate and coatings. Electrochemical results show very low current densities (10-13 A cm-2) without any breakdown potential and impedance values of 1010 Ω cm2.