Login / Signup

Determination of the Molecular Mechanism of Torularhodin against Hepatic Oxidative Damage by Transcriptome Analysis.

Jiayi LiYahui GuoYuliang ChengFuwei PiWeirong YaoYunfei XieQian He
Published in: Oxidative medicine and cellular longevity (2019)
Torularhodin, extracted from Sporidiobolus pararoseus, is a significant carotenoid that is similar to lycopene in structure. Some studies have indicated torularhodin as having antioxidative activities. However, it has not been thoroughly studied with respect to its antioxidative activity and molecular mechanisms in liver injury. Therefore, the aim of this study was to elucidate the antioxidative activity of torularhodin against hydrogen peroxide- (H2O2-) induced damage and the mechanism involved through transcriptome analysis and to explore its antioxidant potential. BRL cells were first subjected to H2O2 damage and then treated with torularhodin. The results showed that at 10-5 g/ml, torularhodin had significant protective effects against H2O2-induced oxidative damage. Morphological and immunofluorescence staining showed that torularhodin could maintain cell integrity and enhance the activity of antioxidant enzymes in the cells. According to transcriptome analysis, 2808 genes were significantly differentially expressed (1334 upregulated and 1474 downregulated) after torularhodin treatment. These genes were involved in three major Gene Ontology categories (biological process, cellular component, and molecular function). Moreover, torularhodin was involved in some cellular pathways, such as cancer inhibition, antioxidation, and aging delay. Our data highlighted the importance of multiple pathways in the antioxidative damage of liver treated with torularhodin and will contribute to get the molecular mechanisms of torularhodin inhibition of hepatic oxidative damage.
Keyphrases