Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement.
Gregory E P PearceyE Paul ZehrPublished in: Experimental brain research (2019)
Arm cycling causes suppression of soleus (SOL) Hoffmann (H-) reflex that outlasts the activity period. Arm cycling presumably activates propriospinal networks that modulate Ia presynaptic inhibition. Interlimb pathways are thought to relate to the control of quadrupedal locomotion, allowing for smooth, coordinated movement of the arms and legs. We examined whether the number of active limb pairs affects the amount and duration of activity-dependent plasticity of the SOL H-reflex. On separate days, 14 participants completed 4 randomly ordered 30 min experimental sessions: (1) quiet sitting (CTRL); (2) arm cycling (ARM); (3) leg cycling (LEG); and (4) arm and leg cycling (A&L) on an ergometer. SOL H-reflex and M-wave were evoked via electrical stimulation of the tibial nerve. M-wave and H-reflex recruitment curves were recorded, while the participants sat quietly prior to, 10 and 20 min into, immediately after, and at 2.5, 5, 7.5, 10, 15, 20, 25, and 30 min after each experimental session. Normalized maximal H-reflexes were unchanged in CTRL, but were suppressed by > 30% during the ARM, LEG, and A&L. H-reflex suppression outlasted activity duration for ARM (≤ 2.5 mins), LEG (≤ 5 mins), and A&L (≤ 30 mins). The duration of reflex suppression after A&L was greater than the algebraic summation of ARM and LEG. This non-linear summation suggests that using the arms and legs simultaneously-as in typical locomotor synergies-amplifies networks responsible for the short-term plasticity of lumbar spinal cord excitability. Enhanced activity of spinal networks may have important implications for the implementation of locomotor training for targeted rehabilitation.