Characteristics of the Pressing Process and Density Profile of MUPF-Bonded Particleboards Produced from Waste Plywood.
Agnieszka LaskowskaPublished in: Materials (Basel, Switzerland) (2024)
Waste plywood containing phenol-formaldehyde (PF) resin is one of the materials that are difficult to use in the production of particleboards based on UF resin. Therefore, the aim of this research was to analyze the possibility of using this type of waste in the production of particleboards bonded with melamine-urea-phenol-formaldehyde (MUPF) resin in order to determine their suitability for particleboard production. The pressing process and density profile of three-layer particleboards were presented. The press closing time for mats containing only recovered particles in the core layer (100%), produced with a face layer ratio of 50%, a resin load for a face layer of 12%, and a core layer of 10%, at a unit pressure of 3 MPa, was 29% shorter than for the industrial particle mats. Regardless of the level of variability of independent factors, the heating time of the mats containing recovered particles was 10-20% shorter than the heating time of the mats with industrial particles. The greatest impact on the maximum density of the face layer of particleboards was observed for the content of the recovered particles and then the resin load. The maximum density area of the face layer was located closer to the surface in particleboards produced with a higher (80%, 100%) content of the recovered particles, a higher (i.e., 12% and 10%, respectively, for face and core layers) resin load, a lower (35%) face layer ratio, and a higher (3 MPa) unit pressure.