Geographic variation in reproductive assurance of Clarkia pulchella.
Megan BontragerChristopher D MuirAmy L AngertPublished in: Oecologia (2019)
Climate can affect plant populations through direct effects on physiology and fitness, and through indirect effects on their relationships with pollinating mutualists. We therefore expect that geographic variation in climate might lead to variation in plant mating systems. Biogeographic processes, such as range expansion, can also contribute to geographic patterns in mating system traits. We manipulated pollinator access to plants in eight sites spanning the geographic range of Clarkia pulchella to investigate geographic and climatic drivers of fruit production and seed set in the absence of pollinators (reproductive assurance). We examined how reproductive assurance and fruit production varied with the position of sites within the range of the species and with temperature and precipitation. We found that reproductive assurance in C. pulchella was greatest in populations in the northern part of the species' range and was not well explained by any of the climate variables that we considered. In the absence of pollinators, some populations of C. pulchella have the capacity to increase fruit production, perhaps through resource reallocation, but this response is climate dependent. Pollinators are important for reproduction in this species, and recruitment is sensitive to seed input. The degree of autonomous self-pollination that is possible in populations of this mixed-mating species may be shaped by historic biogeographic processes or variation in plant and pollinator community composition rather than variation in climate.