Repeated warm water baths decrease sympathetic activity in humans.
Jian CuiZhaohui GaoUrs A LeuenbergerCheryl BlahaJonathan Carter LuckMichael D HerrLawrence I SinowayPublished in: Journal of applied physiology (Bethesda, Md. : 1985) (2022)
Acute whole body heat stress evokes sympathetic activation. However, the chronic effects of repeated moderate heat exposure (RMHE) on muscle sympathetic nerve activity (MSNA) in healthy individuals remain unclear. We performed RMHE with 4 wk (5 days/wk) of warm baths (∼40°C, for 30 min) in nine healthy older (59 ± 2 yr) volunteers. Hemodynamic variables and MSNA were examined before, 1 day after, and 1 wk following 4 wk of RMHE in a laboratory at ∼23°C. Cold pressor test (CPT) and handgrip (HG) exercise were performed during the tests. Under normothermic condition, the resting MSNA burst rate (prior, post, post 1-wk: 31.6 ± 2.0, 25.2 ± 2.0, and 27.7 ± 1.7 bursts/min; P < 0.001) and burst incidence ( P < 0.001) significantly decreased after RMHE. Moreover, the resting heart rate significantly decreased after RMHE (62 ± 2, 60 ± 2, and 58 ± 2 beats/min, P = 0.031). The sensitivity of baroreflex control of MSNA and heart rate were not altered by RMHE, although the operating points were reset. The MSNA and hemodynamic responses (i.e., changes) to handgrip exercise or cold pressor test were not significantly altered. These data suggest that the RMHE evoked by warm baths decreases resting sympathetic activity and heart rate, which can be considered beneficial effects. The mechanism(s) should be examined in future studies. NEW & NOTEWORTHY To our knowledge, this is the first study to observe the effects of repeated warm baths on sympathetic nerve activity during rest and stress in healthy middle age and older individuals. The data suggest that the repeated warm baths decreased resting sympathetic activity and heart rate, which can be considered beneficial effects. This study also provides the first evidence that the repeated warm baths did not alter the baroreflex sensitivity and the sympathetic responses to stress.
Keyphrases
- heart rate
- heart rate variability
- blood pressure
- heat stress
- physical activity
- high intensity
- healthcare
- liver failure
- electronic health record
- risk factors
- skeletal muscle
- big data
- hepatitis b virus
- machine learning
- heat shock
- stress induced
- resistance training
- drug induced
- acute respiratory distress syndrome
- community dwelling
- artificial intelligence
- fluorescent probe