Login / Signup

Immune-stealth VP28-conjugated heparin nanoparticles for enhanced and reversible anticoagulation.

Hussein Reda HusseinChia-Yu ChangYini ZhengChih-Yu YangLi-Hua LiYi-Tzu LeeJun-Yi ChenYu-Chaun LiangChuan-Ju LinYu-Chia ChangHui Nee GeoSuzita Mohd NoorLik Voon KiewFu-Rong ChenChia-Ching Chang
Published in: Nanotechnology (2024)
Heparins are a family of sulfated linear negatively charged polysaccharides that have been widely used for their anticoagulant, antithrombotic, antitumor, anti-inflammatory, and antiviral properties. Additionally, it has been used for acute cerebral infarction relief as well as other pharmacological actions. However, heparin's self-aggregated macrocomplex may reduce blood circulation time and induce life-threatening thrombocytopenia (HIT) complicating the use of heparins. Nonetheless, the conjugation of heparin to immuno-stealth biomolecules may overcome these obstacles. An immunostealth recombinant viral capsid protein (VP28) was expressed and conjugated with heparin to form a novel nanoparticle (VP28-heparin). VP28-heparin was characterized and tested to determine its immunogenicity, anticoagulation properties, effects on total platelet count, and risk of inducing HIT in animal models. The synthesized VP28-heparin trimeric nanoparticle was non-immunogenic, possessed an average hydrodynamic size (8.81 ± 0.58 nm) optimal for the evasion renal filtration and reticuloendothelial system uptake (hence prolonging circulating half-life). Additionally, VP28-heparin did not induce mouse death or reduce blood platelet count when administered at a high dose in vivo (hence reducing HIT risks). The VP28-heparin nanoparticle also exhibited superior anticoagulation properties (2.2× higher prothrombin time) and comparable activated partial thromboplastin time, but longer anticoagulation period when compared to unfractionated heparin. The anticoagulative effects of the VP28-heparin can also be reversed using protamine sulfate. Thus, VP28-heparin may be an effective and safe heparin derivative for therapeutic use.
Keyphrases
  • venous thromboembolism
  • growth factor
  • atrial fibrillation
  • high dose
  • disease virus
  • intensive care unit
  • hepatitis b virus
  • stem cell transplantation
  • liver failure
  • respiratory failure
  • protein protein