Distinct Hydrogen Bonding Dynamics Underlies the Microheterogeneity in DMF-Water Mixtures.
Yimin BaiDexia ZhouSomnath MukherjeeJing LiuHongtao BianYu FangPublished in: The journal of physical chemistry. B (2022)
The hydrogen bonding interaction between the amide functional group and water is fundamental to understanding the liquid-liquid heterogeneity in biological systems. Herein, the structure and dynamics of the N , N -dimethylformamide (DMF)-water mixtures have been investigated by linear and nonlinear IR spectroscopies, using the hydroxyl stretch and extrinsic probe of thiocyanate as local vibrational reporters. According to vibrational relaxation dynamics measurements, the orientational dynamics of water is not directly tied to those of DMF molecules. Wobbling-in-a-cone analysis demonstrates that the water molecules have varying degrees of angular restriction depending on their composition due to the formation of specific water-DMF networks. Because of the preferential solvation by DMF molecules, the rotational dynamics of the extrinsic probe is slowed significantly, and its rotational time constants are correlated to the change of solution viscosity. The unique structural dynamics observed in the DMF-water mixtures is expected to provide important insights into the underlying mechanism of microscopic heterogeneity in binary mixtures.