Detection of structured single-strand DNA via solid-state nanopore.
Shao-Chuang LiuQiao LiYi-Lun YingYi-Tao LongPublished in: Electrophoresis (2019)
Nanopore is a single-molecule analysis method which also employed electrophoresis has achieved promising single-molecule detections. In this study, we designed two kinds of confined spaces by fabricating solid-state nanopores with desirable diameters to study the structured single-strand DNA of C-rich quadruplex. For the nanopore whose diameter is larger than the quadruplex size, the DNA molecule could directly translocate through the nanopore with extremely high speed. For the nanopore whose diameter is smaller than the quadruplex size, DNA molecule which is captured by nanopore could return to the solution without translocation or unzip the quadruplex structure into single-strand and then pass the nanopore. This study certifies that choosing a suitable sensing interface is the vital importance of observing detailed single-molecule information. The solid-state nanopores hold the great potential to study the structural dynamics of quadruplex DNA molecule.