Comparison of intelligent 4D CT sequence scanning and conventional spiral 4D CT: a first comprehensive phantom study.
Rene WernerJuliane SzkitsakThilo SentkerFrederic MadestaAnnette SchwarzSusanne FernolendtMarc VornehmTobias GauerChristoph BertChristian HofmannPublished in: Physics in medicine and biology (2020)
4D CT imaging is a cornerstone of 4D radiotherapy treatment. Clinica 4D CT data are, however, often affected by severe artifacts. The artifacts are mainly caused by breathing irregularity and retrospective correlation of breathing phase information and acquired projection data, which leads to insufficient projection data coverage to allow for proper reconstruction of 4D CT phase images. The recently introduced 4D CT approach i4DCT (intelligent 4D CT sequence scanning) aims to overcome this problem by breathing signal-driven tube control. The present motion phantom study describes the first in-depth evaluation of i4DCT in a real-world scenario. 28 4D CT breathing curves of lung and liver tumor patients with pronounced breathing irregularity were selected to program the motion phantom. For every motion pattern, 4D CT imaging was performed with i4DCT and a conventional spiral 4D C mode. For qualitative evaluation, the reconstructed 4D CT images were presented to clinical experts, who scored image quality. Further quantitative evaluation was based on established image intensity-based artifact metrics to measure (dis)similarity of neighboring image slices. In addition, beam-on and scan times of the scan modes were analyzed. The expert rating revealed a significantly higher image quality for the i4DCT data. The quantitative evaluation further supported the qualitative: While 20% of the slices of the conventional spiral 4D CT images were found to be artifact-affected, the corresponding fraction was only 4% for i4DCT. The beam-on time (surrogate of imaging dose) did not significantly differ between i4DCT and spiral 4D CT. Overall i4DCT scan times (time between first beam-on and last beam-on event, including scan breaks to compensate for breathing irregularity) were, on average, 53% longer compared to spiral CT. Thus, the results underline that i4DCT significantly improves 4D CT image quality compared to standard spiral CT scanning in the case of breathing irregularity during scanning.