JWST detection of a supernova associated with GRB 221009A without an r-process signature.
Peter K BlanchardV Ashley VillarRyan ChornockTanmoy LaskarYijia LiJoel LejaJustin PierelEdo BergerRaffaella MarguttiKate D AlexanderJennifer BarnesYvette CendesTarraneh EftekhariDaniel KasenNatalie LeBaronBrian D MetzgerJames Muzerolle PageArmin RestHuei M SearsDaniel M SiegelS Karthik YadavalliPublished in: Nature astronomy (2024)
Identifying the sites of r-process nucleosynthesis, a primary mechanism of heavy element production, is a key goal of astrophysics. The discovery of the brightest gamma-ray burst (GRB) to date, GRB 221009A, presented an opportunity to spectroscopically test the idea that r-process elements are produced following the collapse of rapidly rotating massive stars. Here we present James Webb Space Telescope observations of GRB 221009A obtained +168 and +170 rest-frame days after the gamma-ray trigger, and demonstrate that they are well described by a SN 1998bw-like supernova (SN) and power-law afterglow, with no evidence for a component from r-process emission. The SN, with a nickel mass of approximately 0.09 M ⊙ , is only slightly fainter than the brightness of SN 1998bw at this phase, which indicates that the SN is not an unusual GRB-SN. This demonstrates that the GRB and SN mechanisms are decoupled and that highly energetic GRBs are not likely to produce significant quantities of r-process material, which leaves open the question of whether explosions of massive stars are key sources of r-process elements. Moreover, the host galaxy of GRB 221009A has a very low metallicity of approximately 0.12 Z ⊙ and strong H 2 emission at the explosion site, which is consistent with recent star formation, hinting that environmental factors are responsible for its extreme energetics.
Keyphrases