Login / Signup

Various facets of intermolecular transfer of phase coherence by nuclear dipolar fields.

Philippe Pelupessy
Published in: Magnetic resonance (Gottingen, Germany) (2023)
It has long been recognized that dipolar fields can mediate intermolecular transfer of phase coherence from abundant solvent to sparse solute spins. Generally, the dipolar field has been considered while acting during prolonged free-precession delays. Recently, we have shown that transfer can also occur during suitable uninterrupted radio frequency pulse trains that are used for total correlation spectroscopy. Here, we will expand upon the latter work. First, analytical expressions for the evolution of the solvent magnetization under continuous irradiation and the influence of the dipolar field are derived. These expressions facilitate the simulations of the transfer process. Then, a pulse sequence for the retrieval of high-resolution spectra in inhomogeneous magnetic fields is described, along with another sequence to detect a transfer from an intermolecular double-quantum coherence. Finally, various schemes are discussed where the magnetization is modulated by a combination of multiple selective radio frequency pulses and pulsed field gradients in different directions. In these schemes, the magnetization is manipulated in such a way that the dipolar field, which originates from a single-spin species, can be decomposed into two components. Each component originates from a part of the magnetization that is modulated in a different direction. Both can independently, but simultaneously, mediate an intermolecular transfer of phase coherence.
Keyphrases