Login / Signup

Integrated microcavity electric field sensors using Pound-Drever-Hall detection.

Xinyu MaZhaoyu CaiChijie ZhuangXiangdong LiuZhecheng ZhangKewei LiuBo CaoJingliang HeChangxi YangChengying BaoRong Zeng
Published in: Nature communications (2024)
Discerning weak electric fields has important implications for cosmology, quantum technology, and identifying power system failures. Photonic integration of electric field sensors is highly desired for practical considerations and offers opportunities to improve performance by enhancing microwave and lightwave interactions. Here, we demonstrate a high-Q microcavity electric field sensor (MEFS) by leveraging the silicon chip-based thin film lithium niobate photonic integrated circuits. Using the Pound-Drever-Hall detection scheme, our MEFS achieves a detection sensitivity of 5.2 μV/(m[Formula: see text]), which surpasses previous lithium niobate electro-optical electric field sensors by nearly two orders of magnitude, and is comparable to atom-based quantum sensing approaches. Furthermore, our MEFS has a bandwidth that can be up to three orders of magnitude broader than quantum sensing approaches and measures fast electric field amplitude and phase variations in real-time. The ultra-sensitive MEFSs represent a significant step towards building electric field sensing networks and broaden the application spectrum of integrated microcavities.
Keyphrases