Login / Signup

Improving Interlayer Adhesion of Poly(p-phenylene terephthalamide) (PPTA)/Ultra-high-molecular-weight Polyethylene (UHMWPE) Laminates Prepared by Plasma Treatment and Hot Pressing Technique.

Long ZhuDmitriy A DikinSimona PercecFei Ren
Published in: Polymers (2021)
Poly(p-phenylene terephthalamide) (PPTA) is a high-performance polymer that has been utilized in a range of applications. Although PPTA fibers are widely used in various composite materials, laminar structures consisting of PPTA and ultra-high-molecular-weight polyethylene (UHMWPE), are less reported. The difficulty in making such composite structures is in part due to the weakness of the interface formed between these two polymers. In this study, a layered structure was produced from PPTA fabrics and UHMWPE films via hot pressing. To improve the interlayer adhesion, oxygen plasma was used to treat the PPTA and the UHMWPE surfaces prior to lamination. It has been found that while plasma treatment on the UHMWPE surface brought about a moderate increase in interlayer adhesion (up to 14%), significant enhancement was achieved on the samples fabricated with plasma treated PPTA (up to 91%). It has been assumed that both surface roughening and the introduction of functional groups contributed to this improvement.
Keyphrases
  • high resolution
  • biofilm formation
  • escherichia coli
  • solar cells
  • high intensity
  • combination therapy
  • pseudomonas aeruginosa
  • cell migration
  • gold nanoparticles
  • cystic fibrosis