Login / Signup

Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO2 Slabs.

Zheng-Yao LiHuibo WangWenyun YangJinbo YangLirong ZhengDongfeng ChenKai SunSongbai HanXiangfeng Liu
Published in: ACS applied materials & interfaces (2018)
Exploiting advanced layered transition metal oxide cathode materials is of great importance to rechargeable sodium batteries. Layered oxides are composed of negatively charged TMO2 slabs (TM = transition metal) separated by Na+ diffusion layers. Herein, we propose a novel insight, for the first time, to control the electrochemical properties by tuning Coulombic repulsion between negatively charged TMO2 slabs. Coulombic repulsion can finely tailor the d-spacing of Na ion layers and material structural stability, which can be achieved by employing Na+ cations to serve as effective shielding layers between TMO2 layers. A series of O3-type NaxMn1/3Fe1/3Cu1/6Mg1/6O2 (x = 1.0, 0.9, 0.8, and 0.7) have been prepared, and Na0.7Mn1/3Fe1/3Cu1/6Mg1/6O2 shows the largest Coulombic repulsion between TMO2 layers, the largest space for Na ion diffusion, the best structural stability, and also the longest Na-O chemical bond with weaker Coulombic attraction, thus leading to the best electrochemical performance. Meanwhile, the thermal stability depends on the Na concentration in pristine materials. Ex situ X-ray absorption (XAS) analysis indicates that Mn, Fe, and Cu ions are all electrochemically active components during insertion and extraction of sodium ion. This study enables some new insights to promote the development of advanced layered NaxTMO2 materials for rechargeable sodium batteries in the future.
Keyphrases