Preparative Separation and Purification of Trichothecene Mycotoxins from the Marine Fungus Fusarium sp. LS68 by High-Speed Countercurrent Chromatography in Stepwise Elution Mode.
Yong LiuXuezhen ZhouC Benjamin NamanYanbin LuLi-Jian DingShan HePublished in: Marine drugs (2018)
The contamination of foods and animal feeds with trichothecene mycotoxins is a growing concern for human and animal health. As such, large quantities of pure trichothecene mycotoxins are necessary for food safety monitoring and toxicological research. A new and effective method for the purification of trichothecene mycotoxins from a marine fungus, Fusarium sp. LS68, is described herein. Preparative high-speed countercurrent chromatography (HSCCC) was utilized for the scalable isolation and purification of four trichothecene mycotoxins for the first time in stepwise elution mode, with a biphasic solvent system composed of hexanes-EtOAc-CH₃OH-H₂O (6:4:5:5, v/v/v/v) and (8.5:1.5:5:5,v/v/v/v). This preparative HSCCC separation was performed on 200 mg of crude sample to yield four trichothecene mycotoxins, roridin E (1), roridin E acetate (2), verrucarin L acetate (3), and verrucarin J (4) in a single run, with each of >98% purity. These compounds were identified by MS, ¹H NMR, 13C NMR, and polarimetry. The results demonstrate an efficient HSCCC method for the separation of trichothecene mycotoxins, which can be utilized to produce pure commercial and research standards.
Keyphrases
- high speed
- atomic force microscopy
- high resolution
- liquid chromatography
- mass spectrometry
- magnetic resonance
- healthcare
- public health
- endothelial cells
- risk assessment
- mental health
- multiple sclerosis
- ms ms
- human health
- climate change
- solid state
- room temperature
- induced pluripotent stem cells
- tandem mass spectrometry
- heavy metals
- high performance liquid chromatography