This study investigated airborne particle release from seventeen nanotechnology-enabled clothing items, including eleven items that were advertised as containing silver nanoparticles. Clothing wear was simulated using an abrader, where the rotating clothing samples came in contact with felt abrader wheels, and size distribution and concentration of the released particles were measured using a Scanning Mobility Particle Sizer and Aerodynamic Particle Sizer. Through the use of inductively coupled plasma mass spectrometry, silver was detected in all eleven products advertised as containing silver, and its concentration varied from approximately 1 ppm to ~1.5×105 ppm depending on the product. Nano-sized particles, as well as larger agglomerates, were released from all investigated products with concentrations as high as ~2×104 particles/cm3; the concentration and size distribution varied substantially from product to product, and silver-based clothing tended to release smaller and higher number concentrations of particles than products where fibers were formulated using nanotechnology. Examination of the released particles using TEM confirmed the presence of manufactured nanoparticles; airborne sample analysis using SEM/EDS showed that the released particles contained Ag as well as other metals. This study can be valuable for the risk assessment of nanotechnology-based consumer goods, especially clothing containing silver.