Login / Signup

Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks.

Yuan-Yuan LiuXiang-Chun LiShi WangTao ChengHuiyan YangChen LiuYanting GongWen-Yong LaiKaiwei Huang
Published in: Nature communications (2020)
Covalent organic frameworks (COFs) have served as a family of porous crystalline molecules for various promising applications. However, controllable synthesis of COFs with uniform morphology is paramount yet still remains quite challenging. Herein, we report self-templated synthesis of uniform and unique hollow spheres based on highly conjugated three-dimensional (3D) COFs with diameters of 500-700 nm. A detailed time-dependent study reveals the continuous transformation from initial nano sphere-like particles into uniform hollow spherical structures with Ostwald ripening mechanism. Particularly, the resulting 3D COF (3D-Sp-COF) is prone to transport ions more efficiently and the lithium-ion transference number (t+) of 3D-Sp-COF reaches 0.7, which even overwhelms most typical PEO-based polymer electrolytes. Inspiringly, the hollow spherical structures show enhanced capacitance performance with a specific capacitance of 251 F g-1 at 0.5 A g-1, which compares favorably with the vast majority of two-dimensional COFs and other porous electrode materials.
Keyphrases
  • metal organic framework
  • molecularly imprinted
  • photodynamic therapy
  • high resolution
  • solid state
  • water soluble
  • ionic liquid
  • mass spectrometry
  • tandem mass spectrometry