Login / Signup

Fast inverse design of microstructures via generative invariance networks.

Xian Yeow LeeJoshua R WaiteChih-Hsuan YangBalaji Sesha Sarath PokuriAmeya JoshiAditya BaluChinmay HegdeBaskar GanapathysubramanianSoumik Sarkar
Published in: Nature computational science (2021)
The problem of the efficient design of material microstructures exhibiting desired properties spans a variety of engineering and science applications. The ability to rapidly generate microstructures that exhibit user-specified property distributions can transform the iterative process of traditional microstructure-sensitive design. We reformulate the microstructure design process using a constrained generative adversarial network (GAN) model. This approach explicitly encodes invariance constraints within GANs to generate two-phase morphologies for photovoltaic applications obeying design specifications: specifically, user-defined short-circuit current density and fill factor combinations. Such invariance constraints can be represented by differentiable, deep learning-based surrogates of full physics models mapping microstructures to photovoltaic properties. Furthermore, we propose a multi-fidelity surrogate that reduces expensive label requirements by a factor of five. Our framework enables the incorporation of expensive or non-differentiable constraints for the fast generation of microstructures (in 190 ms) with user-defined properties. Such proposed physics-aware data-driven methods for inverse design problems can be used to considerably accelerate the field of microstructure-sensitive design.
Keyphrases
  • deep learning
  • white matter
  • public health
  • machine learning
  • high resolution
  • magnetic resonance
  • image quality