Login / Signup

β-Phase Crystallinity, Printability, and Piezoelectric Characteristics of Polyvinylidene Fluoride (PVDF)/Poly(methyl methacrylate) (PMMA)/Cyclopentyl-Polyhedral Oligomeric Silsesquioxane (Cp-POSS) Melt-Compounded Blends.

Toby R EdwardsRahul ShankarPaul G H SmithJacob A CrossZoe A B LequeuxLisa K KempZhe QiangScott T IacanoSarah E Morgan
Published in: ACS applied polymer materials (2024)
Poly(vinylidene fluoride) (PVDF) is a semicrystalline polymer that exhibits unique piezoelectric characteristics along with good chemical resistance and high thermal stability. Layer-based material extrusion (MEX) 3D printing of PVDF is desired to create complex structures with piezoelectric properties; however, the melt processing of PVDF typically directs the formation of the α crystalline allomorph, which does not contribute to the piezoelectric response. In this work, PVDF was compounded with poly(methyl methacrylate) (PMMA) and cyclopentyl-polyhedral oligomeric silsesquioxane (Cp-POSS) nanostructured additives in binary and ternary blends to improve MEX printability while maintaining piezoelectric performance. Overall crystallinity and β phase content were evaluated and quantified using a combination of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). Enhancement of MEX printability was measured by quantifying the interlayer adhesion and warpage of printed parts. All blends studied contained a significant percentage of β allomorph, but it could be detected by ATR-FTIR only after the removal of a thin surface layer. Inclusion of 1% Cp-POSS and up to 10% PMMA in blends with PVDF improved interlayer adhesion (2.3-3.6x) and lowered warpage of MEX printed parts compared to neat PVDF. The blend of 1% Cp-POSS/1% PMMA/PVDF was demonstrated to significantly improve the quality of MEX printed parts while showing similar piezoelectric performance to that of neat PVDF (average piezoelectric coefficient 24 pC/N). MEX printing of PVDF blends directly into usable parts with significant piezoelectric performance while reducing the challenges of printing the semicrystalline polymer opens the potential for application in a number of high value sectors.
Keyphrases
  • escherichia coli
  • computed tomography
  • ionic liquid
  • magnetic resonance imaging
  • drinking water
  • mass spectrometry
  • oxidative stress
  • gold nanoparticles
  • cystic fibrosis
  • low cost
  • cell migration
  • pseudomonas aeruginosa