Bifurcations, relaxation time, and critical exponents in a dissipative or conservative Fermi model.
Danilo S RandoArturo C MartíEdson D LeonelPublished in: Chaos (Woodbury, N.Y.) (2023)
We investigated the time evolution for the stationary state at different bifurcations of a dissipative version of the Fermi-Ulam accelerator model. For local bifurcations, as period-doubling bifurcations, the convergence to the inactive state is made using a homogeneous and generalized function at the bifurcation parameter. It leads to a set of three critical exponents that are universal for such bifurcation. Near bifurcation, an exponential decay describes convergence whose relaxation time is characterized by a power law. For global bifurcation, as noticed for a boundary crisis, where a chaotic transient suddenly replaces a chaotic attractor after a tiny change of control parameters, the survival probability is described by an exponential decay whose transient time is given by a power law.