Login / Signup

Upconversion Nanoprobes for in Vitro and ex Vivo Measurement of Carbon Monoxide.

Ningning WangZuhao LiWei LiuTing DengJinfeng YangRonghua YangJishan Li
Published in: ACS applied materials & interfaces (2019)
Here, we have developed a new colorimetric and luminescence nanosensor, based on upconversion nanoparticles (UCNPs), for in vitro and ex vivo measurement of carbon monoxide (CO). The nanoprobe has two strong fluorescence emission peaks in the UCNP core to excite fluorophores at 540 and 800 nm. The CO-responsive palladium ion-bounded rhodamine B derivatives (Pd-RBDs) are encapsulated in the mesoporous silica (mSiO2) shell and the particles outside the cyclodextrin (CD) layer. Reduction of palladium ions by CO results in the release of palladium from the Pd-RBDs, thereby inducing the closure of the spiro ring of the RBD and the accompanying reduction of rhodamine B (RB) absorption at 500-600 nm overlapping with the luminescence spectrum of UCNPs maximized at 540 nm. Therefore, the I540/I800 ratio of the nanoprobe will increase when CO is present, making it possible to quantitatively measure CO. Besides working in a clean buffer environment with known [CO], this method was evaluated using living cells and tissue sections. Additionally, these probes were also successfully used to investigate the CO-related protective activity of anti-hepatic ischemia-reperfusion injury (HIRI) oligopeptides.
Keyphrases