The Fluorocarbene Exploit: Enforcing Alternation in Ring-Opening Metathesis Polymerization.
Kaoru TashiroMidori AkiyamaKimiaki KashiwagiTakashi OkazoePublished in: Journal of the American Chemical Society (2023)
Fluoroalkenes are known to be notoriously reluctant substrates for olefin metathesis due to the generation of thermodynamically stable Fischer-type fluorocarbene intermediates, which invariably fail to undergo further reaction. In the present disclosure, we find that fluorine substitution on the sp 2 carbon also strictly suppresses homopolymerization of norbornene derivatives (NBEs), and this can be harnessed to achieve alternating ring-opening metathesis polymerization (ROMP) with an appropriately electron-rich comonomer. Dihydrofuran (DHF) is thereby shown to undergo alternating ROMP with fluorinated norbornenes, the perfectly alternating structure of the resulting copolymer having been unambiguously elucidated by 1 H, 19 F, and 13 C NMR analyses. Furthermore, we find that the degradability of the resultant copolymers in acidic media via hydrolysis of enol ether moieties in the backbone can be predictably modulated by the number of fluorine atoms present in the NBE comonomer, affording an opportunity to engage with the desirable physical properties of fluorinated polymers while limiting their attendant environmental degradability issues.